
‘

SGXPecial: Specializing SGX Interfaces
Against Code Reuse Attacks

Shachee Mishra
shmishra@cs.stonybrook.edu

Michalis Polychronakis
mikepo@cs.stonybrook.edu

‘

SGXPecial: Specializing SGX Interfaces
Against Code Reuse Attacks

Shachee Mishra
shmishra@cs.stonybrook.edu

Michalis Polychronakis
mikepo@cs.stonybrook.edu

‘

Outline

3

ØCode Reuse Attacks
ØAttack Surface Reduction

Ø Intel SGX
Ø Interfaces

Ø SGXPecial

‘

Code Reuse Attacks 101

Shared
Library

main()

An adversary can reuse benign code from a process’ address space

Operating
System

Ø Attacker looks for
gadgets in the address
space

Ø Chain gadgets together
to achieve arbitrary
functionality

4

‘

Application
foo()

foo()

No Debloating Function Debloating

Application

foo()

foo()

bar() bar()

Application Debloating
Remove unneeded code/functions to restrict attacker’s capabilities

foo()

bar()

foo()

bar()

5

‘

Application
foo(1)

foo(2)

Function Debloating Argument Specialization

Application

foo(1)

foo(2)

foo(3) foo(3)

Argument-level Specialization
Not all functions can be removed by function debloating

foo() foo(i == 1 || 2)

6

‘

1

main()

2

3 4 5

Ø Find set of valid targets for every control flow
Ø Ensure that control flow transfers are only made to these pre-decided sets

Control Flow Integrity (CFI)

7

Runtime enforcement technique to prevent control flow hijacking

[main] -> [1,2]
[1] -> [3,4]
[2] -> [5]

‘

Ø Attackers now are restricted to use specific control flows
Ø Not all critical function paths are equally protected by CFI rules

So… What happens now?

8

Not every invocation of a library function is same

2

3

1

main()

4execve

execve

Direct Transfer
Indirect Transfer

‘

Outline

9

ØCode Reuse Attacks
ØAttack Surface Reduction

Ø Intel SGX
Ø Interfaces

Ø SGXPecial

‘

Intel Software Guard Extensions (SGX)

10

Secret Region “Enclave” protected from malicious actors

OS

App Code

App Data

Enclave

Enclave
Code

Enclave
Data

Enclave
Control

Structures

Ø Enclave code and data reside in
protected memory

Ø Entering and Exiting from the enclave
are done through special instructions:
Ø EENTER
Ø EEXIT

Ø Enclave consists of its code, data and
control structures

EENTER EEXIT

‘

SGX SDK: Attack Surface

11

Intel SGX SDK is the most popular tool for building SGX applications

Source

SGX SDK

Compiler

App Code

Enclave

Untrusted Runtime Systems (uRTS)

Trusted Runtime Systems (tRTS)

Enclave Code

ECALL OCALL

‘

Code Reuse Attacks in SGX: Malicious Host

12

Standard SGX Threat Model

App Code

Enclave
Ø Everything outside the enclave is

untrusted

Ø OS loads the encrypted enclave binary

Ø SGX provides Confidentiality and
Integrity to the encrypted enclave
region

Enclave Code Enclave Data

OS/VMM

‘

Guard’s Dilemma[1]

13

ROP attack that uses gadgets from SDK libraries

App Code
Enclave

Enclave Code

Trusted Runtime Systems (tRTS)

Restore State
Counterfeit

State

Ø Malicious host exploits
an in-enclave bug

Ø Uses gadgets from tRTS
to restore to a fake state
introduced by the host

Ø No backward CFI in SGX

[1] The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel {SGX}. In 27th USENIX Security Symposium (USENIX Security 18)

‘

Code Reuse Attacks in SGX: Malicious Enclave

14

Intel SGX does not guarantee that the code executed in the enclave is from
a trusted source - Intel

App Code

Enclave

Enclave Code Enclave Data

OS/VMM

Ø Enclaves are black boxes

Ø Application and OS can not look
inside the enclaves

Ø What if they come from untrusted
sources? What if they contain
malicious code?

‘

SGX-ROP[1]

15

Uses Intel TSX to look for gadgets in host application

Ø Reads and Writes are atomic

Ø Error -> Abort and Rollback

Ø Uses Read and Write abilities of
Enclave to read gadgets and inject
ROP chains

[1] Practical enclave malware with Intel SGX. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2019)

Enclave

Injection

App
Data

App
Code Stack

ROP Chain

ReadWrite

GadgetsFake Stack

‘

Two-sided Attack Surface

Untrusted
Runtime
System
(uRTS)

Trusted
Runtime
System
(tRTS)

Enclave

Host Application

ECALL

ECALL

OCALL

ECALL

Dark-ROP[3]

Guard’s
Dilemma [1]

TeeRex[2]

SGXROP [4]

SGXJail [5]

[1] The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel {SGX}. In 27th USENIX Security Symposium (USENIX Security 18) [2] TeeRex: Discovery and Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves. In 29th USENIX Security Symposium (USENIX Security 20)
[3] Hacking in darkness: Return oriented programming against secure enclaves. In 26th USENIX Security Symposium (USENIX Security 17) [4] Practical enclave malware with Intel SGX. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2019)
[5] SGXJail: Defeating Enclave Malware via Confinement. In 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019) 16

‘

Outline

17

ØCode Reuse Attacks
ØAttack Surface Reduction

Ø Intel SGX
Ø Interfaces

Ø SGXPecial

‘

SGXPecial

18

Specialize SGX Interfaces according to individual applications

Source

SGX SDK

SGXPecial
Compiler

App Code

Enclave

Enclave Code

tRTS

uRTS

‘

Function Level Specialization

19

Identify functions that the application and enclave use.

App Code

Enclave

Enclave Code

tRTS

uRTSsgx_create_enclave() sgx_get_metadata()

Ø Analyze application and create
specialized interfaces

Ø Functions might be used by the
enclave for bookkeeping

Ø do_egetkey() – used to get SGX
keys; but, not used by application

do_egetkey()

‘

Context-Sensitive Argument Specialization

20

Extract and Neutralize Static Arguments to function calls

Host Application Enclave

foo()

uRTS tRTS

bar()

baz()

ecall(1, ..)

ecall(idx)

ecall(3, ..)

do_ecall(idx)

ecall(2, ..)

ecall1()ecall2()ecall3() do_ecall1()do_ecall2()do_ecall3()

‘

Type-based Filtering

21

SGXPecial: Verifies types of arguments marshalled for ECALLs/OCALLs

ecall(index, &ms)

Enclave Code
Ø Host can not read/write enclave memory

Ø Parameters are marshalled from the host
application to the enclave, and return
values are un-marshalled

Ø Generic marshalling functions used for
all ECALLs/OCALLs

do_ecall(index, void *ms)

ecall(index, void *ms)

ms.value1 = i

ecall1(void *ms){
//check size of struct

ecall1(&ms)

ms.value1 = i
ms.value1 = i
ms.value2 = j

‘

Evaluation: Applications

22

Tested with Sample and Real-world Applications

Ø 7 Sample Applications:
Ø SampleEnclave
Ø SealUnseal etc.

Ø Real-world Applications:
Ø Mbedtls-SGX
Ø Sqlite
Ø SGX SSL
Ø SGXCryptofile

‘

Security Case Study: Guard’s Dilemma[1]

23

ROP attack that uses gadgets from tRTS

App Code
Enclave

Enclave Code

Trusted Runtime Systems (tRTS)

asm_oret()
Counterfeit

State

Ø Vulnerable enclave code
calls asm_oret()

Ø asm_oret() à
xregs_restore()

Ø SGXPecial identifies
asm_oret() not used by enclave

[1] The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel {SGX}. In 27th USENIX Security Symposium (USENIX Security 18)

‘

Security Case Study: SGX-ROP[1]

24

Uses Intel TSX to look for gadgets in host application

Ø write()/read() are OCALLs

Ø OCALL functions are identified

Ø If the enclave does not use the
functions, SGXPecial blocks the
functions from executing

[1] Practical enclave malware with Intel SGX. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2019)

Enclave

Injection

App
Data

App
Code Stack

ROP Chain

Read-
OCALL

Write-
OCALL

GadgetsFake Stack

ocall1()

‘

Ø We presented SGXPecial: Modifies SGX SDK to generate interfaces
specialized to the current application and enclave.

Ø SGXPecial performs: Function-level, Argument-level and Type-based
specialization.

Ø Tested SGXPecial with sample and real-world applications and show
that real code reuse exploits can be prevented.

Conclusion

25

For questions/ comments/ concerns: shmishra@cs.stonybrook.edu

‘

26

Thank You!

‘

Backup Slides

27

‘

Hybrid Attack
Code Reuse is generally used as first step in a hybrid attack

Ø ROP gadgets are Turing complete, but are complex to implement
Ø ROP is used as first step to attain an “Executable Memory”

Ø Writing a “shellcode” to the memory and executing è Code Injection Attack

ROP
Payload

Virtual
Protect() WX

Data

ShellCode

‘

SGX Runtime Environment
Trusted and Untrusted Runtime Systems communicate over SGX’s Interface

Untrusted
Runtime
System
(URTS)

Trusted
Runtime
System
(TRTS)

Enclave

Host Application

ECALL

ECALL

OCALL

ECALL

‘

TeeRex[1]

Public SGX Enclaves could be exploited by host applications

[1] Cloosters, T., Rodler, M., & Davi, L. (2020). TeeRex: Discovery and Exploitation of Memory Corruption Vulnerabilities in SGX Enclaves. In 29th USENIX Security Symposium (USENIX
Security 20)

Untrusted
Runtime
System
(URTS)

Host Application

ECALL Untrusted Data

Results

Enclave Data copied into enclave.
No check on content.
E.g. A target address could
be inside the enclave.

Rewrite return address to
functions that could jump
anywhere.

‘

SgxPecial
Specialize interface between enclave and host application

URTS TRTS

Enclave

Host Application

ECALL_1

SgxPecial

ECALL_1

OCALL_1

