REPRODUCING SPECTRE ATTACK WITH GEMS5:
HOW TO DO IT RIGHT?

PIERRE AYOUB - EURECOM

PIERRE.AYOUB@EURECOM.FR

CLEMENTINE MAURICE - UNIV LILLE, CNRS, INRIA

CLEMENTINE.MAURICE@INRIA.FR

EUROSEC'21

26 APRIL, 2021

INTRODUCTION

WHOAMI

WHOAMI

Intern

WHOAMI

Intern

Ph.D. Student

WHOAMI

WHOAMI

///////////////

ABOUT THIS PRESENTATION

THE INITIAL IDEA

=V

SPECTRE

¢?

cemd

THE INITIAL IDEA

e Can we simulate transient execution attacks? = Spectre.

=

SPECTRE

¢?

cembd

THE INITIAL IDEA

e Can we simulate transient execution attacks? = Spectre.

e Why? J}
Q

SPECTRE

¢?

cembd

THE INITIAL IDEA

e Can we simulate transient execution attacks? = Spectre.

° Why?
m Rely on tiny CPU details to work = difficult to simulate. {{}
Q

SPECTRE

¢?

cembd

THE INITIAL IDEA

e Can we simulate transient execution attacks? = Spectre.

e Why?
m Rely on tiny CPU details to work = difficult to simulate. {{}
m Hard to study and reproduce = simulation could be helping. &

SPECTRE

¢?

cembd

THE INITIAL IDEA

e Can we simulate transient execution attacks? = Spectre.

e Why?
m Rely on tiny CPU details to work = difficult to simulate. {{;
m Hard to study and reproduce = simulation could be helping. &

e Comparing a real system and a simulated system:

SPECTRE

¢

cembd

THE INITIAL IDEA

e Can we simulate transient execution attacks? = Spectre.

e Why?
m Rely on tiny CPU details to work = difficult to simulate. {{;
m Hard to study and reproduce = simulation could be helping. &

e Comparing a real system and a simulated system:
m Raspberry Pi, ARM processor.

SPECTRE

¢

cembd

THE INITIAL IDEA

e Can we simulate transient execution attacks? = Spectre.

e Why?
m Rely on tiny CPU details to work = difficult to simulate. /
m Hard to study and reproduce = simulation could be helping. &

e Comparing a real system and a simulated system:
m Raspberry Pi, ARM processor.

= gem5, micro-architectural simulator. SPECTRE

¢

cembd

THE INITIAL IDEA

Can we simulate transient execution attacks? = Spectre.
Why?
m Rely on tiny CPU details to work = difficult to simulate.

m Hard to study and reproduce = simulation could be helping.

Comparing a real system and a simulated system:
m Raspberry Pi, ARM processor.
m gemb5, micro-architectural simulator.

Goals:

=

SPECTRE

¢

cembd

THE INITIAL IDEA

Can we simulate transient execution attacks? = Spectre.
Why?
m Rely on tiny CPU details to work = difficult to simulate.

m Hard to study and reproduce = simulation could be helping.

Comparing a real system and a simulated system:
m Raspberry Pi, ARM processor.
m gemb5, micro-architectural simulator.

Goals:
m Attack that works similarly on both systems.

=

SPECTRE

¢

cembd

THE INITIAL IDEA

Can we simulate transient execution attacks? = Spectre.
Why?
m Rely on tiny CPU details to work = difficult to simulate.

m Hard to study and reproduce = simulation could be helping.

Comparing a real system and a simulated system:
m Raspberry Pi, ARM processor.
m gemb5, micro-architectural simulator.

Goals:
m Attack that works similarly on both systems.
m Compare the faithfulness of the simulation.

=

SPECTRE

¢

cembd

THE INITIAL IDEA

Can we simulate transient execution attacks? = Spectre.
Why?
m Rely on tiny CPU details to work = difficult to simulate.

m Hard to study and reproduce = simulation could be helping.

Comparing a real system and a simulated system:
m Raspberry Pi, ARM processor.
m gemb5, micro-architectural simulator.

Goals:
m Attack that works similarly on both systems.
m Compare the faithfulness of the simulation.
m Discover how gem5 could be helpful.

=

SPECTRE

¢

cembd

WHAT REALLY HAPPENED

Theory: ,Jl = e F)

\

A
Practice: /A\\ Fﬁ\%ﬁ B

PROBLEMS

PROBLEMS

1. Available Spectre implementations Failed on our Raspberry Pi = guidelines and custom
implementation.

PROBLEMS

1. Available Spectre implementations Failed on our Raspberry Pi = guidelines and custom
implementation.
2. Reproducing a micro-architecture is impossible.

PROBLEMS

1. Available Spectre implementations Failed on our Raspberry Pi = guidelines and custom
implementation.

2. Reproducing a micro-architecture is impossible.
3. gem5 needed some extension to compare it to the real system = patch.

CONTRIBUTIONS

CONTRIBUTIONS

e Guidelines that are important for micro-architectural security research.

CONTRIBUTIONS

e Guidelines that are important for micro-architectural security research.
e Usage of gem5 for helping attack development and understanding.

CONTRIBUTIONS

e Guidelines that are important for micro-architectural security research.
e Usage of gem5 for helping attack development and understanding.
e Simulation of Spectre and evaluation of Faithfulness.

CONTRIBUTIONS

Guidelines that are important for micro-architectural security research.
Usage of gem5 for helping attack development and understanding.
Simulation of Spectre and evaluation of Faithfulness.

Requirements of gem5 to simulate those attacks.

TABLE OF CONTENT

e Related Work
Spectre Attack
gem5 Simulator
Implementation
Faithfulness
Conclusion

RELATED WORK

RELATED WORK

e No specific literature about simulation of micro-architectural attack.

J. LOWE-POWER - VISUALIZING SPECTRE WITH GEM5

e?cem>d

if (x < arrayl_size) J

T~ UXUUAVIIC/.3 CALL NEAR .
CALL_NEAR

=
3
™
v

0x004011c7.
0x0040105e .
0x0040105e .
0x0040105f .
0x00401062.
R R oo A A Y - 0x00401066.
..... BBEOOAG6] 5 3 3). 5 ..V]- 0x00401066.
0x00401066¢C.
0x00401066e .
- 0x0040106e
- 0x00401072.
- 0x00401072.
0x00401072.
0x00401074.
0x00401078.
0x00401078.
- 0x0040107e.
0x0040107e.
0x00401681.
0x00401681.
0x00401084.
0x00401087 .
- 0x00401089.
- 0x00401089.
- 0x00401090.
- 0x004010960.
- 0x004010960.
- 0x00401097.
- 0x00401099.
- 0x00401099.
- 0x0040109f .
- 0x0040109f.
- 0x0040109f.
- 0x004010a0.
- 0x004010a0.
- 0x004010a0.
- 0x004011cc,

array2[arrayl[x] * 512]}

~ BX0040IId0.
- 0x004011d0.
- 0x004011d4.
- 0x004011d4.

»x'z=

ovoz=

N ON OO ONHOHD OO OO HOONHO OO HDOD DS

moNRoNH

- 0x00401148.

J. LOWE-POWER - VISUALIZING SPECTRE WITH GEM5

e?cem>d

if (x < arrayl_size) J

T~ UXUUAVIIC/.3 CALL NEAR .
CALL_NEAR

=
3
™
v

0x004011c7.
0x0040105e .
0x0040105e .
0x0040105f .
0x00401062.
R R oo A A Y - 0x00401066.
..... BBEOOAG6] 5 3 3). 5 ..V]- 0x00401066.
0x00401066¢C.
0x00401066e .
- 0x0040106e
- 0x00401072.
- 0x00401072.
0x00401072.
0x00401074.
0x00401078.
0x00401078.
- 0x0040107e.
0x0040107e.
0x00401681.
0x00401681.
0x00401084.
0x00401087 .
- 0x00401089.
- 0x00401089.
- 0x00401090.
- 0x004010960.
- 0x004010960.
- 0x00401097.
- 0x00401099.
- 0x00401099.
- 0x0040109f .
- 0x0040109f.
- 0x0040109f.
- 0x004010a0.
- 0x004010a0.
- 0x004010a0.
- 0x004011cc,

array2[arrayl[x] * 512]}

~ BX0040IId0.
- 0x004011d0.
- 0x004011d4.
- 0x004011d4.

e Blog post

»x'z=

ovoz=

N ON OO ONHOHD OO OO HOONHO OO HDOD DS

moNRoNH

- 0x00401148.

J. LOWE-POWER - VISUALIZING SPECTRE WITH GEM5

e?cem>d

if (x < arrayl_size) J

T~ UXUUAVIIC/.3 CALL NEAR .
CALL_NEAR

=
3
™
v

0x004011c7.
0x0040105e .
0x0040105e .
0x0040105f .
0x00401062.
R R oo A A Y - 0x00401066.
..... BBEOOAG6] 5 3 3). 5 ..V]- 0x00401066.
0x00401066¢C.
0x00401066e .
- 0x0040106e
- 0x00401072.
- 0x00401072.
0x00401072.
0x00401074.
0x00401078.
0x00401078.
- 0x0040107e.
0x0040107e.
0x00401681.
0x00401681.
0x00401084.
0x00401087 .
- 0x00401089.
- 0x00401089.
- 0x00401090.
- 0x004010960.
- 0x004010960.
- 0x00401097.
- 0x00401099.
- 0x00401099.
- 0x0040109f .
- 0x0040109f.
- 0x0040109f.
- 0x004010a0.
- 0x004010a0.
- 0x004010a0.
- 0x004011cc,

array2[arrayl[x] * 512]}

~ BX0040IId0.
- 0x004011d0.
- 0x004011d4.
- 0x004011d4.

e Blog post
e X86

»x'z=

ovoz=

N ON OO ONHOHD OO OO HOONHO OO HDOD DS

moNRoNH

- 0x00401148.

J. LOWE-POWER - VISUALIZING SPECTRE WITH GEM5

=
3
™
v

edcemb

if (x < arrayl_size) J

il - 6x0040106¢

- 0x004011cc,
- _0v004011

T~ UXUGAVIICT.
0x004011c7.
0x0040105e .
0x0040105e .
0x0040105f .
0x00401062.
- 0x00401066.
- 0x00401066.
0x00401066¢C.
0x00401066e .

- 0x00401072.
- 0x00401072.
0x00401072.
0x00401074.
0x00401078.
0x00401078.
- 0x0040107e.
0x0040107e.
0x00401681.
- 0x00401081.
- 0x00401084.
- 0x00401087.
- 0x00401089.
- 0x00401089.
- 0x00401090.
- 0x004010960.
- 0x004010960.
- 0x00401097.
- 0x00401099.
- 0x00401099.
- 0x0040109f .
- 0x0040109f.
- 0x0040109f.
- 0x004010a0.
- 0x004010a0.
- 0x004010a0.

3

N ON OO ONHOHD OO OO HOONHO OO HDOD DS

1

TALL_NEAR
CALL_NEAR

»x'z=

ovoz=

array2[arrayl[

~ BX00401140.
- 0x004011d0.
- 0x004011d4.
- 0x004011d4.
- 0x0p4011d4.
- 0x00401148.
- 0x00401148.

moNRoNH

e Blog post
e X86
e Default gem5 configuration

J. LOWE-POWER - VISUALIZING SPECTRE WITH GEM5

=
3
™
v

edcemb

if (x < arrayl_size) J

T~ UXUUAVIIC/.3 CALL NEAR .
.]- 0x004011c7.4 CALL NEAR
0x0040105e .
0x0040105e .
0x0040105f .
0x00401062.
R oo R . . . A A Y - 0x00401066.
..... BBEOOAG6] 5 3 3). 5 ..V]- 0x00401066.
0x00401066¢C.
.]- 0x0040106e.

- 0x0040106e
- 0x00401072.
- 0x00401072.
0x00401072.
0x00401074.
0x00401078.
0x00401078.
- 0x0040107e.
0x0040107e.
0x00401681.
- 0x00401081.
- 0x00401084.
- 0x00401087.
- 0x00401089.
- 0x00401089.
- 0x00401090.
- 0x004010960.
- 0x004010960.
- 0x00401097.
- 0x00401099.
- 0x00401099.
- 0x0040109f .
- 0x0040109f.
- 0x0040109f.
- 0x004010a0.
- 0x004010a0.
- 0x004010a0.
- 0x004011cc,
- _0v004011

array2[arrayl[x] * 512]}

~ BX00401140.
- 0x004011d0.
- 0x004011d4.
- 0x004011d4.
- 0x0p4011d4.
- 0x00401148.
- 0x00401148.

Blog post

x86

Default gem5 configuration
We wanted to go deeper!

»x'z=

ovoz=

N ON OO ONHOHD OO OO HOONHO OO HDOD DS

1

moNRoNH

THE SPECTRE ATTACK

A TRANSIENT INSTRUCTION?

It's like no
unauthorized
instruction has been
executed here...

Instruction
Stream

Architectural Domain

Micro-Architectural Domain
But here, the revert
operation is not
perfect!

Computing
Ressources

Micro-State 1 Micro-State 1'

v

-

Time Execute an instruction Revert to the_ previous micro-
that should not have been archlte::tur al
state

executed

Summary

A TRANSIENT INSTRUCTION?

It's like no
- unauthorized
Instruction instruction has been
Stream executed here...
Architectural Domain 99
Micro-Architectural Domain
But here, the revert
) operation is not
Computing perfect!
Ressources
Micro-State 1 Micro-State 1'
S >
Time Execute an instruction Revert to the previous micro-
architectural

that should not have been

executed state

A TRANSIENT INSTRUCTION?

It's like no
N unauthorized
Instruction instruction has been
Stream e executed here...

Architectural Domain

Micro-Architectural Domain

But here, the revert
operation is not
perfect!

Computin : VA
I g L——»
Ressources J : /

&

Micro-State 1 Micro-State 1'

\4

AN

Revert to the previous micro-
architectural
state

Time Execute an instruction
that should not have been

executed

Summary
e Aninstruction has been transiently executed if it affects the CPU micro-architectural state—
leaving its architectural state as prior the execution.

A TRANSIENT INSTRUCTION?

It's like no
i ‘ unauthorized
Instruction instruction has been
Stream executed here...
A LR

Architectural Domain

Micro-Architectural Domain
But here, the revert
operation is not

Computing : A/ perfect!

Ressources AV A /

Micro-State 1 Micro-State 1'

A\

AN

Revert to the previous micro-
architectural
state

Time . .
Execute an instruction

that should not have been
executed

Summary
e Aninstruction has been transiently executed if it affects the CPU micro-architectural state—
leaving its architectural state as prior the execution.
e |f the the new micro-architectural state depends on a secret and the attacker is able to probe it, he
can recover the secret.

THE BRANCH PREDICTOR

THE BRANCH PREDICTOR

e Predict instruction fFlow when branches are encountered.

THE BRANCH PREDICTOR

e Predict instruction Flow when branches are encountered.
e Prediction is dynamic, it is based on previous execution.

THE PHT, A STRUCTURE USED BY THE BRANCH PREDICTOR

Pattern History Table (PHT)

/ 2-bit counter \

2-bit counter

false true

2-bit counter

History Pattern 2-bit counter pra—— Prediction

value
0100010 " »| 2bitcounter | " | {Taken, Not Taken}

2-bit counter

2-bit counter

2-bit counter

& 2-bit counter /

HOW DOES SPECTRE WORK?

WE NEED A TARGET

void victim function (int x)

{

if (x < arrayl_size)
y = array2larrayl[x]];

I if (x < arrayl size) l

N

false

Reality

Prediction true false true false

WE NEED A TARGET

void victim function (int x)

{

if (x < arrayl_size)
y = array2larrayl[x]];

I if (x < arrayl size) ‘

Reality

Prediction true

e |f X is malicious, arrayl[x] isthe secret value!

STEPS OF THE ATTACK

STEPS OF THE ATTACK

Summary

STEPS OF THE ATTACK
Summary

Phase 1 - Training Phase 2 - Attack Phase 3 - Recovering

Execute the Send a malicious

victim branch index and load an Probe the micro-architectural
with a valid arbitrary memory e domain to recover the loaded
index address transiently : secret

® @ ©

Y

Time

STEPS OF THE ATTACK

Summary

’ Phase 1 - Training

Execute the
victim branch
with a valid
index

Phase 2 - Attack

Send a malicious
index and load an
arbitrary memory

address transiently

&

Phase 3 - Recovering

Probe the micro-architectural
domain to recover the loaded
secret

Time

Details

Y

STEPS OF THE ATTACK

Summary

l Phase 1 - Training ‘

Execute the
victim branch
with a valid
index

Phase 2 - Attack Phase 3 - Recovering

Send a malicious

index and load an Probe the micro-architectural
arbitrary memory e domain to recover the loaded
address transiently . secret

® @ ©

Time

Details

Y

’Phase 1 - Training

1.Send x < arrayl size

are increased

. 1.Send x such as x = &secret -
2. Repeat until PHT's counters :

Phase 2 - Attack Phase 3 - Recovering

. 1.Find the element of array2 that has
been cached (array2 cached)

2. Secret is equal to &array2 cached -
&array2

arrayl

Time

Y

GUIDELINES: HOW TO DEVELOP AND REPRODUCE THE ATTACK

GUIDELINES: HOW TO DEVELOP AND REPRODUCE THE ATTACK

e Why?

GUIDELINES: HOW TO DEVELOP AND REPRODUCE THE ATTACK

e Why?
= Hard to reproduce the attack using already existing implementation.

GUIDELINES: HOW TO DEVELOP AND REPRODUCE THE ATTACK

e Why?
= Hard to reproduce the attack using already existing implementation.
= Hard to develop a functional attack on a vulnerable processor.

GUIDELINES: HOW TO DEVELOP AND REPRODUCE THE ATTACK

e Why?
= Hard to reproduce the attack using already existing implementation.
= Hard to develop a functional attack on a vulnerable processor.

e Refer to the paper for more details.

DEVELOPMENT

DEVELOPMENT

Compiler version, compiler and manual optimizations

DEVELOPMENT

Compiler version, compiler and manual optimizations

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer For covert channel

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer For covert channel

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering

e \ery tricky because we make blind assumptions.

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering

e \ery tricky because we make blind assumptions.

e gemb5 can help resolve this!

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering
e \ery tricky because we make blind assumptions.
e gemb5 can help resolve this!
Transient execution window

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering
e \ery tricky because we make blind assumptions.
e gemb5 can help resolve this!
Transient execution window
e Time during which transient executions can happen.

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering
e \ery tricky because we make blind assumptions.
e gemb5 can help resolve this!
Transient execution window
e Time during which transient executions can happen.
e g.1T (arrayl size < 1)vs.if ((float) x / (float) arrayl size < 1)

DEVELOPMENT

Compiler version, compiler and manual optimizations
Timer for covert channel
Prefetcher, re-ordering
e \ery tricky because we make blind assumptions.
e gemb5 can help resolve this!
Transient execution window
e Time during which transient executions can happen.
e g.1T (arrayl size < 1)vs.if ((float) x / (float) arrayl size < 1)

Our implementation is also full of tips in the comments, feel free to look at it!

REPRODUCIBILITY

REPRODUCIBILITY

e Pinning

REPRODUCIBILITY

e Pinning
e Page size

REPRODUCIBILITY

e Pinning
e Page size
e Frequency

REPRODUCIBILITY
Pinning

Page size
Frequency

[J
[J
[J
¢ Mitigations

THE GEM5 SIMULATOR

GEMS5

GEMS5

e Micro-architectural simulator, cycle-accurate.

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts
e C++ core where logicis programmed.
e Python interface where systems are built.

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts
e C++ core where logicis programmed.
e Python interface where systems are built.
Architecture

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts
e C++ core where logicis programmed.
e Python interface where systems are built.
Architecture
Alpha, ARM, Power, SPARC, x86, MIPS, RISC-V.

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts
e C++ core where logicis programmed.
e Python interface where systems are built.
Architecture
Alpha, ARM, Power, SPARC, x86, MIPS, RISC-V.
Generic Micro-Architecture

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts
e C++ core where logicis programmed.
e Python interface where systems are built.
Architecture
Alpha, ARM, Power, SPARC, x86, MIPS, RISC-V.
Generic Micro-Architecture
Very simple ones to a 7-stage out-of-order pipelined processor.

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts
e C++ core where logicis programmed.
e Python interface where systems are built.
Architecture
Alpha, ARM, Power, SPARC, x86, MIPS, RISC-V.
Generic Micro-Architecture
Very simple ones to a 7-stage out-of-order pipelined processor.
Branch Prediction

GEMS5

e Micro-architectural simulator, cycle-accurate.
e State-of-the-art project, started in 2011.
Parts
e C++ core where logicis programmed.
e Python interface where systems are built.
Architecture
Alpha, ARM, Power, SPARC, x86, MIPS, RISC-V.
Generic Micro-Architecture
Very simple ones to a 7-stage out-of-order pipelined processor.
Branch Prediction
Bi-Mode, TAGE, Two-Level, Perceptron, Tournament...

HOW TO USE IT?

BUILDING A SIMULATED SYSTEM (SNIPPETS)

Configuring parameters of a cache memory

Instantiating some CPU components

Connecting components together

Passing arguments to the Linux kernel

BUILDING A SIMULATED SYSTEM (SNIPPETS)

Configuring parameters of a cache memory

size = '32kB'

assoc = 2

data_latency = 1

mshrs = 4

tgts_per_mshr = 8

write buffers = 4

prefetcher = StridePrefetcher (queue_size=4, degree=4)

Instantiating some CPU components

Connecting components together

Passing arguments to the Linux kernel

BUILDING A SIMULATED SYSTEM (SNIPPETS)

Configuring parameters of a cache memory

size = '32kB'

assoc = 2

data_latency = 1

mshrs = 4

tgts_per_mshr = 8

write buffers = 4

prefetcher = StridePrefetcher (queue_size=4, degree=4)

Instantiating some CPU components

for cpu in self.cpus:
cpu.createThreads ()
cpu.createInterruptController ()
cpu.branchPredAdd ()

if system.getMemoryMode () == "timing":
self.cacheAddLl ()
self.cacheAddL2 ()

Connecting components together

Passing arguments to the Linux kernel

BUILDING A SIMULATED SYSTEM (SNIPPETS)

Configuring parameters of a cache memory

size = '32kB'

assoc = 2

data_latency = 1

mshrs = 4

tgts_per mshr 8

write buffers 4

prefetcher = StridePrefetcher (queue_size=4, degree=4)

Instantiating some CPU components

for cpu in self.cpus:
cpu.createThreads ()
cpu.createInterruptController ()
cpu.branchPredAdd ()

if system.getMemoryMode () == "timing":
self.cacheAddLl ()
self.cacheAddL2 ()

Connecting components together

cpu.dtb.walker.port = bus.slave
cpu.itb.walker.port = bus.slave
cpu.dcache port = bus.slave
cpu.icache port = bus.slave

Passing arguments to the Linux kernel

BUILDING A SIMULATED SYSTEM (SNIPPETS)

Configuring parameters of a cache memory

size = '32kB'

assoc = 2

data_latency = 1

mshrs = 4

tgts_per mshr 8

write buffers 4

prefetcher = StridePrefetcher (queue_size=4, degree=4)

Instantiating some CPU components

for cpu in self.cpus:
cpu.createThreads ()
cpu.createInterruptController ()
cpu.branchPredAdd ()

if system.getMemoryMode () == "timing":
self.cacheAddLl ()
self.cacheAddL2 ()

Connecting components together

cpu.dtb.walker.port = bus.slave
cpu.itb.walker.port = bus.slave
cpu.dcache port = bus.slave
cpu.icache port = bus.glave

Passing arguments to the Linux kernel

kernel cmd = [
"console=ttyAMAQ",
"root=/dev/vdal",
"rw",
"mem=2G@0x80000000™",

LAUNCHING A SIMULATION

Launching a full-system simulation

Connecting to the simulation terminal

Kernel booting up

Opening a shell on the simulated system

LAUNCHING A SIMULATION

Launching a full-system simulation
./build/ARM/gem5.opt ./configs/example/arm/starter_fs.py --num-cores=4 --disk-image="aarch64-ubuntu.img" --kernel="vmlinux.arm64"

Connecting to the simulation terminal

Kernel booting up

Opening a shell on the simulated system

LAUNCHING A SIMULATION

Launching a full-system simulation

./build/ARM/gem5.opt ./configs/example/arm/starter_fs.py --num-cores=4 --disk-image="aarch64-ubuntu.img" --kernel="vmlinux.arm64"

Connecting to the simulation terminal

gemb5/util/term/m5term localhost 3456

Kernel booting up

Opening a shell on the simulated system

LAUNCHING A SIMULATION

Launching a full-system simulation

./build/ARM/gem5.opt ./configs/example/arm/starter_fs.py

--num-cores=4 --disk-image="aarché64-ubuntu.img"

Connecting to the simulation terminal

--kernel="vmlinux.arm64"

gemb5/util/term/m5term localhost 3456

Kernel booting up

=== m5 slave terminal: Terminal 0 =

[0.000000] Booting Linux on physical CPU 0x0000000000 [0x410£d4070]

[0.000000] Linux version 4.18.0+ (arm-employee@arm-computer) (gcc version 7.4.0 (Ubuntu/Linaro 7.4.0-lubuntul~18.04.1))
[0.000000] Machine model: V2P-CAl5

[0.000000]

Memory limited to 2048MB

Opening a shell on the simulated system

LAUNCHING A SIMULATION

Launching a full-system simulation

./build/ARM/gem5.opt ./configs/example/arm/starter_fs.py --num-cores=4 --disk-image="aarch64-ubuntu.img" --kernel="vmlinux.arm64"

Connecting to the simulation terminal

gemb5/util/term/m5term localhost 3456

Kernel booting up

=== m5 slave terminal: Terminal ====
0.000000] Booting Linux on physical CPU 0x0000000000 [0x410£d4070]
0.000000] Linux version 4.18.0+ (arm-employee@arm-computer) (gcc version 7.4.0 (Ubuntu/Linaro 7.4.0-lubuntul~18.04.1))
0.000000] Machine model: V2P-CAl5
0.000000] Memory limited to 2048MB

Opening a shell on the simulated system

[0.256634] random: init: uninitialized urandom read (12 bytes read)

[0.271877] init: hwclock main process (684) terminated with status 1

[0.286689] random: mountall: uninitialized urandom read (12 bytes read)
Ubuntu 14.04 LTS aarché64-gem5 ttyAMAOQO

aarch64-gem5 login: root

Welcome to Ubuntu 14.04 LTS (GNU/Linux 4.18.0+ aarché64)

root@aarch64 -gem5: ~#

BENEFITS OF (PIPELINE) VISUALIZATION

BENEFITS OF (PIPELINE) VISUALIZATION

e gem5 = output the state of any element in the system.

BENEFITS OF (PIPELINE) VISUALIZATION

e gem5 = output the state of any element in the system.
e Konata = graphically visualize the pipeline of a simulated processor.

TRANSIENT EXECUTION OF A READ INSTRUCTION WITH A MALICIOUS INDEX

[oc[Rn 1 [Is[cm
oc[Rn 1 [Ds
oc[Rn 1 2 Is[cm

Is[cm

10 11]ps 1

Transient load
that leak the
secret

1
1
2

2

g ~||n
Q [[w||w]||w

w|[w

NiSIENSNSnN

AN PPN

ollo||w||o|o||o||x||«

~|[a]|~]~s]o)|@

@ ||o||o||o||o||o||~ |~

)
)
)
)
9
6
9
)

)
9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42[Is 1 |cCm
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43|Is
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45|Is

7

8 9

1
)

Long bec
flushed

1
2 3 a

5

6

7

10 11]cm

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57| Is
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59| Is

Division i
operati

1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

cm

1

al

Load not
transient this

BRANCH PREDICTOR BEING TRAINED

12[1s]
121
1208
120

oc | fn
oc [#n
oc [#n

a
cn
40
[0
a1
3

[

ilcn
s

58 50 60 61 62]1s|cn 1

60 61 62 63

4 65 66 67 68 69 70|1Is|

SPECTRE DEFEATED BY THE BRANCH PREDICTOR

40 a1
0

a

a
a
38
a
a
a8

)

YD
kD

Jump into the
Flush+Reload part (only

happened after attack) oc [Rn
oc [Rn

oc [Rn
Rn
Rn
Rn
Rn

IMPLEMENTING...

...THE SPECTRE ATTACK ON ARM

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.
e Needed an implementation with the following requirements:

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.
e Needed an implementation with the following requirements:
1. Stable results,

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.
e Needed an implementation with the following requirements:
1. Stable results,
2. Follows our guidelines,

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.
e Needed an implementation with the following requirements:
1. Stable results,
2. Follows our guidelines,
3. Usable both on the Raspberry Pi and on gem5,

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.
e Needed an implementation with the following requirements:
1. Stable results,
2. Follows our guidelines,

3. Usable both on the Raspberry Pi and on gem5,
4. Metrics output.

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.
e Needed an implementation with the following requirements:
1. Stable results,
2. Follows our guidelines,
3. Usable both on the Raspberry Pi and on gem5,

4. Metrics output.
Steps

...THE SPECTRE ATTACK ON ARM

e IAIKimplementation fFailed to perform the attack successfully.
e Needed an implementation with the following requirements:
1. Stable results,

2. Follows our guidelines,

3. Usable both on the Raspberry Pi and on gem5,
4. Metrics output.
Steps

Applied our guidelines for : Obtimize the : : Ready to compare the
Port Kocher et al.'s x86 “_ development (prefetcher, N ptim . Implement the metrics | i I\| attack on the real system
. . . . > implementation (threshold, L . s :
implementation to ARM re-ordering, transient 7 timer function) : / (perf event) ' and on the simulated

window) system

Non-working ’ : Working, non-stable results ‘ : Stable results ‘

...AN ARM GEMS5 SYSTEM

...AN ARM GEMS5 SYSTEM

e Steps:

...AN ARM GEMS5 SYSTEM

e Steps:
1. Syscall emulation system

...AN ARM GEMS5 SYSTEM

e Steps:
1. Syscall emulation system
2. Caches

...AN ARM GEMS5 SYSTEM

e Steps:
1. Syscall emulation system
2. Caches
3. Branch predictor = Spectre working

...AN ARM GEMS5 SYSTEM

e Steps:
1. Syscall emulation system
2. Caches

3. Branch predictor = Spectre working
4. Full-system simulation

...AN ARM GEMS5 SYSTEM

e Steps:
1. Syscall emulation system
2. Caches

3. Branch predictor = Spectre working
4. Full-system simulation

5. Patch for perf event = measurements working

...AN ARM GEMS5 SYSTEM

e Steps:
1. Syscall emulation system
2. Caches

3. Branch predictor = Spectre working
4. Full-system simulation
5. Patch for perf event = measurements working
e Getting closer of the ARM Cortex-A72 of the Raspberry Pi.

DETAILS OF THE GEM5 SYSTEM

Two-Level Global History Based

CONFIGURATION OF THE BRANCH PREDICTOR

ARM Cortex-A72

Predictor
History Pattern ‘
010...100 ‘
Pattern History Table (PHT)

00.00 / 2-bitcounter
00..01 2-bit counter
00..10 2-bit counter

2-bit counter

Index

2-bit counter
11..01 2-bit counter
11..10 2-bit counter
11..11 2-bit counter

Taken

Counter
value

Prediction

Pattern History Table (PHT)
for mostly taken branches

gem5

Bi-Mode Predictor

‘ History Pattern

010...100

~ 2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter

Index
either

2-bit counter

2-bit counter

2-bit counter

JU

Prediction

Pattern History Table (PHT)
for mostly not-taken
branches

2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter
Jj

Prediction

CONSIDERING SPECTRE, BOTH PREDICTORS ARE EQUIVALENT

Two-Level Global History Based

ARM Cortex-A72

Predictor

History Pattern

010...100 l
00..00
00...01
00...10
Index

............. P —

Pattern History Table (PHT) ‘

2-bit counter

2-bit counter

2-bit counter

11..01

11..10

11..11

2-bit counter
2-bit counter
2-bit counter
2-bit counter

2-bit counter

~———

Counter
value

1 e 2

3 «— 4

Taken

\

\\¥/

Prediction

Not-
e

gem5
Bi-Mode Predictor

History Pattern

010...100

When considering
the Spectre attack

Pattern History Table (PHT)

Pattern History Table (PHT)
for mostly taken branches for mestly not-taken
branches

2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter

2-bit counter
2-bit counter
2-bit counter

2-bit counter

Prediction

Index
either

2-bit counter

-bit counter

2-bN counger
2-bit ter

2-bit cgynter

2-bitfounter

Prediction

IS THE SIMULATION FAITHFUL?

IS THE SIMULATION FAITHFUL?

e Asimulation not FaithFul will not be so useful...

IS THE SIMULATION FAITHFUL?

e Asimulation not Faithful will not be so useFful...
e Measurements of metrics:

IS THE SIMULATION FAITHFUL?

e Asimulation not FaithFul will not be so useful...
e Measurements of metrics:
1. Retrieved bytes: Similar

IS THE SIMULATION FAITHFUL?

e Asimulation not Faithful will not be so useful...
e Measurements of metrics:

1. Retrieved bytes: Similar

2. Iterations: Two times easier on gem5

IS THE SIMULATION FAITHFUL?

e Asimulation not Faithful will not be so useful...
e Measurements of metrics:

1. Retrieved bytes: Similar

2. Iterations: Two times easier on gem5

3. Cycles: Three time faster on gem5

IS THE SIMULATION FAITHFUL?

e Asimulation not Faithful will not be so useful...
e Measurements of metrics:

1. Retrieved bytes: Similar

2. Iterations: Two times easier on gem5

3. Cycles: Three time faster on gem5

4. Cache misses: Aberrant result

IS THE SIMULATION FAITHFUL?

e Asimulation not Faithful will not be so useful...
e Measurements of metrics:

1. Retrieved bytes: Similar

2. Iterations: Two times easier on gem5

3. Cycles: Three time faster on gem5

4. Cache misses: Aberrant result

5. Mispredicted branches: Similar

CONCLUSION

CONCLUSION

e |f simulation becomes widely used:

CONCLUSION

e |f simulation becomes widely used:
m Easier to reproduce older attacks for understanding and experimentation.

CONCLUSION

e |f simulation becomes widely used:
m Easier to reproduce older attacks for understanding and experimentation.
m With faithful models, researchers could use the simulator itself to discover new vulnerabilities.

CONCLUSION

e |f simulation becomes widely used:

m Easier to reproduce older attacks for understanding and experimentation.

m With faithful models, researchers could use the simulator itself to discover new vulnerabilities.
e But...

CONCLUSION

e |f simulation becomes widely used:

m Easier to reproduce older attacks for understanding and experimentation.

m With faithful models, researchers could use the simulator itself to discover new vulnerabilities.
e But...

m Simulation is currently slow.

CONCLUSION

e |f simulation becomes widely used:

m Easier to reproduce older attacks for understanding and experimentation.

m With faithful models, researchers could use the simulator itself to discover new vulnerabilities.
e But...

m Simulation is currently slow.

= Simulator still needs improvements and extensions.

CONCLUSION

e |f simulation becomes widely used:

m Easier to reproduce older attacks for understanding and experimentation.

m With faithful models, researchers could use the simulator itself to discover new vulnerabilities.
e But...

m Simulation is currently slow.

= Simulator still needs improvements and extensions.
e [N summary:

CONCLUSION

e |f simulation becomes widely used:

m Easier to reproduce older attacks for understanding and experimentation.

m With faithful models, researchers could use the simulator itself to discover new vulnerabilities.
e But...

m Simulation is currently slow.

= Simulator still needs improvements and extensions.
e [N summary:

m Possible to simulate micro-architectural attacks and being accurate.

CONCLUSION

e |f simulation becomes widely used:

m Easier to reproduce older attacks for understanding and experimentation.

m With faithful models, researchers could use the simulator itself to discover new vulnerabilities.
e But...

m Simulation is currently slow.

= Simulator still needs improvements and extensions.
e [N summary:

m Possible to simulate micro-architectural attacks and being accurate.

= Visualization is a very powerful technique to understand the micro-architectural behavior.

WEBSITE
https://pierreay.github.io/reproduce-spectre-gem5/

QUESTIONS?

pierre.ayoub@eurecom.fr

APPENDICES

THE MICROARCHITECTURAL DOMAIN

Flush+Reload
Often used to probe the cache state.

Time Flush Cached

Let something happened that will cache an
element of the array (in our case, a transient
instruction)

Reload + Time
Measure

v Slow Slow Slow Slow Slow Slow Slow Slow Slow Slow Slow

SIMULATION MODES

SIMULATION MODES

Syscall Emulation

SIMULATION MODES

Syscall Emulation
gemb5 plays the role of the operating system, as it emulates every system calls of a binary over the
simulated hardware.

SIMULATION MODES

Syscall Emulation
gemb5 plays the role of the operating system, as it emulates every system calls of a binary over the
simulated hardware.

Full-System Simulation

SIMULATION MODES

Syscall Emulation
gemb5 plays the role of the operating system, as it emulates every system calls of a binary over the
simulated hardware.

Full-System Simulation
gem5 runs an entire operating system over the simulated hardware.

SIMULATION MODES

Syscall Emulation
gemb5 plays the role of the operating system, as it emulates every system calls of a binary over the
simulated hardware.

Full-System Simulation
gem5 runs an entire operating system over the simulated hardware.

Baremetal

SIMULATION MODES

Syscall Emulation
gemb5 plays the role of the operating system, as it emulates every system calls of a binary over the
simulated hardware.
Full-System Simulation
gem5 runs an entire operating system over the simulated hardware.
Baremetal
gemb5 runs native assembly code over the simulated hardware, without any operating system layer.

RESULTS

Table 1: Ratio between gem5 and Raspberry Pi runs for each
metric. A value below 1 means that gem5's metric is lower than
the Raspberry Pi's metric.

Metric
Retrieved Bytes
lterations
Cycles

Cache Misses

Mispredicted Branches

Accuracy Ratio Accuracy Ratio

Mean Standard Deviation
1.05 NaN

0.57 3.81

0.31 2.12

584.08 4581.02

0.99 2.47

