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SOFTWARE SECURITY

❑ Software vulnerabilities remain a critical 

issue for software security.

⚫ Over 53,000 vulnerabilities were disclosed for 

the last three years.

⚫ A Russian-based espionage campaign 

compromised U.S. federal agencies in 2020.
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VULNERABILITIES IN PRIVILEGED

CODE

❑ Exploiting vulnerabilities in 

privileged code can cause the most 

severe damages
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Program Partition

PRINCIPLE OF LEAST PRIVILEGE

❑ Separating a program into a 

privileged part and a non-privileged 

part
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PROGRAM PARTITIONING

❑ Each program partition can run in its own 

address space

❑ Partitions communicate via a guarded 

interface

❑ Improves software security
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AUTOMATIC PROGRAM PARTITIONING

❑ Each partition implemented as an separate 

program

❑ Communication implemented using RPC 

function calls

❑ Partitioning at function level
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ISSUE WITH FUNCTION-LEVEL

PARTITIONING

❑ How do we partition functions containing 

intertwined privileged code and non-

privileged code?
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A NAÏVE SOLUTION

❑ The naïve solution can result in a high 

number of RPC calls between partitions.
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FINE-GRAINED PROGRAM

PARTITIONING

❑ Partitioning within a function
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FINE-GRAINED PROGRAM

PARTITIONING

❑ Using static program analysis to 

partition functions in existing 

programs

❑ Focusing on two hot spot 

programming patterns

❑ Merging code together to reduce the 

number of RPC calls

12



PATTERN #1: NON-PRIVILEGED TO

PRIVILEGED

❑ Non-privileged code followed by 

privileged code
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SOLUTION #1: NON-PRIVILEGED TO

PRIVILEGED
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PATTERN #2: PRIVILEGED TO NON-

PRIVILEGED – SIMPLE CASE

❑ Privileged code followed by non-

privileged code
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PATTERN #2: PRIVILEGED TO NON-

PRIVILEGED – COMPLEX CASE
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SOLUTION #2: PRIVILEGED TO NON-

PRIVILEGED
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PROGRAM PARTITIONING STEPS
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IMPLEMENTATION

❑ We implemented a prototype that 

partitions C/C++ programs.

⚫ identifies hotspots

⚫ creates primary functions

⚫ creates secondary functions 

❑ All primary and secondary functions 

are automatically created in the form 

of source code.
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EVALUATION - BENCHMARKS

❑ The prototype is evaluated on 10 

networking and interactive programs.

⚫ ssh

⚫ wget

⚫ Eight Linux shadow utilities, e.g. chsh, 

passwd, useradd, userdel, etc.
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EVALUATION RESULTS

❑ The prototype is effective for all 

benchmark programs.

⚫ identifies hotspots

⚫ creates primary functions

⚫ creates secondary functions 

❑ The mean runtime overhead 

introduced by partitioning is 5.2%.

❑ Merging code results in 1.38x speed 

up.
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CONCLUSION

❑ Fine-grained partitioning enables 

separation of intertwined privileged 

code and non-privileged code.

❑ It improves performance of 

partitioned programs.
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