
FINE-GRAINED PROGRAM

PARTITIONING FOR SECURITY

Zhen Huang*, Trent Jaeger#, Gang Tan#

* School of Computing, DePaul University

School of Electrical Engineering & Computer
Science, Pennsylvania State University

1

OUTLINE

❑ Program Partitioning For Security

❑ Fine-grained Program Partitioning

❑ Implementation

❑ Evaluation

❑ Conclusion

2

SOFTWARE SECURITY

❑ Software vulnerabilities remain a critical

issue for software security.

⚫ Over 53,000 vulnerabilities were disclosed for

the last three years.

⚫ A Russian-based espionage campaign

compromised U.S. federal agencies in 2020.

3

VULNERABILITIES IN PRIVILEGED

CODE

❑ Exploiting vulnerabilities in

privileged code can cause the most

severe damages

4

Privileged Code

Injected Code

Privileged

Data

Privileged

Operation

Program Partition

PRINCIPLE OF LEAST PRIVILEGE

❑ Separating a program into a

privileged part and a non-privileged

part

5

Program

Non-Privileged

Privileged

Non-Privileged

Program Partition

Privileged

PROGRAM PARTITIONING

❑ Each program partition can run in its own

address space

❑ Partitions communicate via a guarded

interface

❑ Improves software security

6

Program Partition

Non-Privileged

Program Partition

Privileged

AUTOMATIC PROGRAM PARTITIONING

❑ Each partition implemented as an separate

program

❑ Communication implemented using RPC

function calls

❑ Partitioning at function level

7

Program Partition

Non-Privileged

functions

Program Partition

Privileged

functions

Non-Privileged

data
Privileged

data

ISSUE WITH FUNCTION-LEVEL

PARTITIONING

❑ How do we partition functions containing

intertwined privileged code and non-

privileged code?

8

Program PartitionProgram

Function A Non-Privileged

Program Partition

Privileged

Non-Privileged

Privileged

Non-Privileged

Privileged

A NAÏVE SOLUTION

❑ The naïve solution can result in a high

number of RPC calls between partitions.

9

Program Partition

Function A

Program Partition

Non-Privileged

Call A1

Non-Privileged

Function A1

Privileged #1

Function A2

Privileged #2Call A2

OUTLINE

❑ Program Partitioning For Security

❑ Fine-grained Program Partitioning

❑ Communication between Partitions

❑ Evaluation

❑ Conclusion

10

FINE-GRAINED PROGRAM

PARTITIONING

❑ Partitioning within a function

11

Program Partition

Function A

Non-Privileged

Program Partition

Function A*

Privileged

Program

Function A

Non-Privileged

Privileged

Non-Privileged

Privileged

Non-Privileged

Privileged

FINE-GRAINED PROGRAM

PARTITIONING

❑ Using static program analysis to

partition functions in existing

programs

❑ Focusing on two hot spot

programming patterns

❑ Merging code together to reduce the

number of RPC calls

12

PATTERN #1: NON-PRIVILEGED TO

PRIVILEGED

❑ Non-privileged code followed by

privileged code

13

Program

Function A

Non-Privileged

Privileged #1

data

data

Privileged #2

SOLUTION #1: NON-PRIVILEGED TO

PRIVILEGED

14

Program Partition

Function A

Non-Privileged

Program Partition

Function A*

Privileged #1

Privileged #2 Call A*

data
data

PATTERN #2: PRIVILEGED TO NON-

PRIVILEGED – SIMPLE CASE

❑ Privileged code followed by non-

privileged code

15

Program

Function A

Privileged

Non-Privileged Non-Privileged

result?
case #1 case #2

PATTERN #2: PRIVILEGED TO NON-

PRIVILEGED – COMPLEX CASE

16

Program

Function A

Privileged #1

Non-Privileged Non-Privileged

Privileged #2

Non-Privileged Non-Privileged

SOLUTION #2: PRIVILEGED TO NON-

PRIVILEGED

17

Program Partition

Function A

Call A*

Non-Privileged

Non-Privileged

Program Partition

Function A*

Privileged #1

Privileged #2

Non-Privileged

Non-Privileged

PROGRAM PARTITIONING STEPS

18

Identifying Hotspot

Creating Primary

Function A*

Creating Secondary

Function A

Producing RPC

Interface

IMPLEMENTATION

❑ We implemented a prototype that

partitions C/C++ programs.

⚫ identifies hotspots

⚫ creates primary functions

⚫ creates secondary functions

❑ All primary and secondary functions

are automatically created in the form

of source code.

19

EVALUATION - BENCHMARKS

❑ The prototype is evaluated on 10

networking and interactive programs.

⚫ ssh

⚫ wget

⚫ Eight Linux shadow utilities, e.g. chsh,

passwd, useradd, userdel, etc.

20

EVALUATION RESULTS

❑ The prototype is effective for all

benchmark programs.

⚫ identifies hotspots

⚫ creates primary functions

⚫ creates secondary functions

❑ The mean runtime overhead

introduced by partitioning is 5.2%.

❑ Merging code results in 1.38x speed

up.
21

CONCLUSION

❑ Fine-grained partitioning enables

separation of intertwined privileged

code and non-privileged code.

❑ It improves performance of

partitioned programs.

22

Thank You!

zhen.huang@depaul.edu

23

