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• Memory-Safe Programming Languages (e.g. Rust)
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• Mitigations:

• Integrity Enforcement (e.g. CFI)

• Software Diversity (e.g. ASLR)

• Multi-Variant eXecution (MVX)

Solutions



Multi-Variant eXecution (MVX)
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In a nutshell:

• Run multiple diversified program variants 
in lockstep on identical inputs

• Suspend them at every system call

• Compare system call numbers/arguments

• Replicate I/O results

brk brk
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MVX Systems Security (1)

✓Protection against attacks that rely on knowledge of absolute 
addresses 

✓Protection against attacks that attempt to acquire knowledge through 
information leakage
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Bruschi et al. “Diversified process replicae for defeating memory error exploits.” In IPCCC, 2007.
Volckaert et al. “Cloning your gadgets: Complete ROP attack immunity with multi-variant execution.” In TDSC, 2012.
Lu et al. “Stopping memory disclosures via diversification and replicated execution.” In TDSC, 2018.



MVX Systems Security (2)
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 Vulnerable to  attacks that use relative memory locations

 Data-only attacks are still possible

Hu et al. “Data-oriented programming: On the expressiveness of non-control data attacks.” In S&P, 2016.
Göktas et al. “Position-independent code reuse: On the eectiveness of ASLR in the absence of information disclosure.”  In EuroS&P, 2018.
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Observation: Diversity is limited to what a single platform can offer.
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Distributed Heterogeneous N-Variant Execution

- Variants run on different physical machines

- Leverage ISA and ABI heterogeneity to increase diversity
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ISA-Heterogeneity
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ABI-Heterogeneity

• Size of primitive data types

• Structs layout
- Packing

- Alignment

- Padding

• Constants
- System call numbers

- Flags and modes

• Calling conventions

• Machine instructions

• Endianness

• Register set

• Pointer width

• Available system calls

Additional Diversity
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Performance (?)

System Call 
Interception

Monitoring and 
Replication
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ReMon (ATC 2016)

• Hybrid MVX design
- Cross-process monitor (CP-MON)

- In-process monitor (IP-MON)

• Classification of system calls

• CP-MON handles security-sensitive system calls (e.g. execve)

• IP-MON handles non-sensitive system calls (e.g., getpid)
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Additional Optimizations

• Replication is still expensive

• Asynchronous replication

• Avoid replication when possible
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Security of dMVX

• Security-sensitive system calls are always monitored

• CONNECTOR is a separate process

• Information hiding to protect the in-process monitors and sensitive 
values
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Benchmark DMON dMVX

READ 37.04× 6.78×

GETCWD 39.39× 2.79×

SCHED_YIELD 37.90× 2.87×

Lighttpd 5.43× 3.1%

Case Studies
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Conslusion

• dMVX: new distributed hybrid MVX design
- Low system call interception cost

- Avoid monitoring and replication when possible

- Provide similar security guarantees with other distributed MVX systems

• Evaluation
- Microbenchmarks

- Lighttpd
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