
1

Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, Stijn Volckaert

dMVX: Secure and Efficient
Multi-Variant Execution in a

Distributed Setting

2

3

• Memory-Safe Programming Languages (e.g. Rust)

4

• Mitigations:

• Integrity Enforcement (e.g. CFI)

• Software Diversity (e.g. ASLR)

• Multi-Variant eXecution (MVX)

Solutions

Multi-Variant eXecution (MVX)

Follower
Variant

Leader
Variant

Monitor

Kernel

t t

In a nutshell:

• Run multiple diversified program variants
in lockstep on identical inputs

• Suspend them at every system call

• Compare system call numbers/arguments

• Replicate I/O results

brk brk

5

write write

MVX Systems Security (1)

✓Protection against attacks that rely on knowledge of absolute
addresses

✓Protection against attacks that attempt to acquire knowledge through
information leakage

6

Bruschi et al. “Diversified process replicae for defeating memory error exploits.” In IPCCC, 2007.
Volckaert et al. “Cloning your gadgets: Complete ROP attack immunity with multi-variant execution.” In TDSC, 2012.
Lu et al. “Stopping memory disclosures via diversification and replicated execution.” In TDSC, 2018.

MVX Systems Security (2)

7

 Vulnerable to attacks that use relative memory locations

 Data-only attacks are still possible

Hu et al. “Data-oriented programming: On the expressiveness of non-control data attacks.” In S&P, 2016.
Göktas et al. “Position-independent code reuse: On the eectiveness of ASLR in the absence of information disclosure.” In EuroS&P, 2018.

8

Observation: Diversity is limited to what a single platform can offer.

Leader
Variant

Monitor

Kernel

9

Kernel

Follower
Variant

Monitor

Physical host 1 Physical host 2

syscall (...)

DMON (DIMVA 2020)

syscall (...)

Inter-Monitor
Communication via

Network

Distributed Heterogeneous N-Variant Execution

- Variants run on different physical machines

- Leverage ISA and ABI heterogeneity to increase diversity

10

ISA-Heterogeneity

11

ABI-Heterogeneity

• Size of primitive data types

• Structs layout
- Packing

- Alignment

- Padding

• Constants
- System call numbers

- Flags and modes

• Calling conventions

• Machine instructions

• Endianness

• Register set

• Pointer width

• Available system calls

Additional Diversity

12

Performance (?)

System Call
Interception

Monitoring and
Replication

13

Leader Variant

Kernel

Monitor

Follower Variant

Kernel

Monitor

syscall

DMON (DIMVA 2020)

Physical host 1 Physical host 2

ReMon (ATC 2016)

• Hybrid MVX design
- Cross-process monitor (CP-MON)

- In-process monitor (IP-MON)

• Classification of system calls

• CP-MON handles security-sensitive system calls (e.g. execve)

• IP-MON handles non-sensitive system calls (e.g., getpid)

14

15

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

execve

Distributed Hybrid Design

Physical host 1 Physical host 2

16

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

Distributed Hybrid Design

Physical host 1 Physical host 2

execve

17

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

dMVX Design

Physical host 1 Physical host 2

execve

18

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Core Components

Physical host 1 Physical host 2

execve

19

Leader Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Core Components

Physical host 1 Physical host 2

execve

20

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Core Components

Physical host 1 Physical host 2

21

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Core Components

Physical host 1 Physical host 2

22

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Core Components

Physical host 1 Physical host 2

23

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Core Components

Physical host 1 Physical host 2

Additional Optimizations

• Replication is still expensive

• Asynchronous replication

• Avoid replication when possible

24

25

Leader Variant

Kernel

DCP-MON

Syscall Broker

syscall

DIP-MON

Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

Replication

Physical host 1 Physical host 2

Expensive replication
of results through

network

26

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Asynchronous Replication

Physical host 1 Physical host 2

27

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Asynchronous Replication

Physical host 1 Physical host 2

DIP-MON

28

Leader Variant

Kernel

DCP-MON

Syscall Broker

getpid

DIP-MON

CB Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

CONNECTOR CONNECTOR

CB

Asynchronous Replication

Physical host 1 Physical host 2

29

Leader Variant

Kernel

DCP-MON

Syscall Broker

read/write

DIP-MON

Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

Selective Replication (1)

Physical host 1 Physical host 2

read/write

Each Variant uses its
own copy of the file for

I/O operations.

Files that are not
changed by an

external process.

30

Leader Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

Follower Variant

Kernel

DCP-MON

Syscall Broker

DIP-MON

Selective Replication (2)

Physical host 1 Physical host 2

Use metadata to
predict result.

System calls with
“expected”

results.

syscall syscall

Security of dMVX

• Security-sensitive system calls are always monitored

• CONNECTOR is a separate process

• Information hiding to protect the in-process monitors and sensitive
values

31

32

Benchmark DMON dMVX

READ 37.04× 6.78×

GETCWD 39.39× 2.79×

SCHED_YIELD 37.90× 2.87×

Lighttpd 5.43× 3.1%

Case Studies

33

Benchmark DMON dMVX

READ 37.04× 6.78×

GETCWD 39.39× 2.79×

SCHED_YIELD 37.90× 2.87×

Lighttpd 5.43× 3.1%

Case Studies

Conslusion

• dMVX: new distributed hybrid MVX design
- Low system call interception cost

- Avoid monitoring and replication when possible

- Provide similar security guarantees with other distributed MVX systems

• Evaluation
- Microbenchmarks

- Lighttpd

34

35

